40 research outputs found

    The Burning Number of Directed Graphs: Bounds and Computational Complexity

    Get PDF
    The burning number of a graph was recently introduced by Bonato et al. Although they mention that the burning number generalizes naturally to directed graphs, no further research on this has been done. Here, we introduce graph burning for directed graphs, and we study bounds for the corresponding burning number and the hardness of finding this number. We derive sharp bounds from simple algorithms and examples. The hardness question yields more surprising results: finding the burning number of a directed tree with one indegree-0 node is NP-hard, but FPT; however, it is W[2]-complete for DAGs. Finally, we give a fixed-parameter algorithm to find the burning number of a digraph, with a parameter inspired by research in phylogenetic networks

    The Burning Number of Directed Graphs: Bounds and Computational Complexity

    Get PDF
    The burning number of a graph was recently introduced by Bonato et al. Although they mention that the burning number generalizes naturally to directed graphs, no further research on this has been done. Here, we introduce graph burning for directed graphs, and we study bounds for the corresponding burning number and the hardness of finding this number. We derive sharp bounds from simple algorithms and examples. The hardness question yields more surprising results: finding the burning number of a directed tree with one indegree-0 node is NP-hard, but FPT; however, it is W[2]-complete for DAGs. Finally, we give a fixed-parameter algorithm to find the burning number of a digraph, with a parameter inspired by research in phylogenetic networks

    Rearrangement operations on unrooted phylogenetic networks

    Get PDF
    Rearrangement operations transform a phylogenetic tree into another one and hence induce a metric on the space of phylogenetic trees. Popular operations for unrooted phylogenetic trees are NNI (nearest neighbour interchange), SPR (subtree prune and regraft), and TBR (tree bisection and reconnection). Recently, these operations have been extended to unrooted phylogenetic networks, which are generalisations of phylogenetic trees that can model reticulated evolutionary relationships. Here, we study global and local properties of spaces of phylogenetic networks under these three operations. In particular, we prove connectedness and asymptotic bounds on the diameters of spaces of different classes of phylogenetic networks, including tree-based and level-k networks. We also examine the behaviour of shortest TBR-sequence between two phylogenetic networks in a class, and whether the TBR-distance changes if intermediate networks from other classes are allowed: for example, the space of phylogenetic trees is an isometric subgraph of the space of phylogenetic networks under TBR. Lastly, we show that computing the TBR-distance and the PR-distance of two phylogenetic networks is NP-hard

    Connectedness of Unit Distance Subgraphs Induced by Closed Convex Sets

    Get PDF
    The unit distance graph GRd1G^1_{R^d} is the infinite graph whose nodes are points in RdR^d, with an edge between two points if the Euclidean distance between these points is 11. The 2-dimensional version GR21G^1_{R^2} of this graph is typically studied for its chromatic number, as in the Hadwiger-Nelson problem. However, other properties of unit distance graphs are rarely studied. Here, we consider the restriction of GRd1G^1_{R^d} to closed convex subsets XX of RdR^d. We show that the graph GRd1[X]G^1_{R^d}[X] is connected precisely when the radius of r(X)r(X) of XX is equal to 00, or when r(X)≥1r(X)\geq 1 and the affine dimension of XX is at least 22. For hyperrectangles, we give bounds for the graph diameter in the critical case that the radius is exactly 1

    Treewidth of display graphs: bounds, brambles and applications

    Get PDF
    Phylogenetic trees and networks are leaf-labelled graphs used to model evolution. Display graphs are created by identifying common leaf labels in two or more phylogenetic trees or networks. The treewidth of such graphs is bounded as a function of many common dissimilarity measures between phylogenetic trees and this has been leveraged in fixed parameter tractability results. Here we further elucidate the properties of display graphs and their interaction with treewidth. We show that it is NP-hard to recognize display graphs, but that display graphs of bounded treewidth can be recognized in linear time. Next we show that if a phylogenetic network displays (i.e. topologically embeds) a phylogenetic tree, the treewidth of their display graph is bounded by a function of the treewidth of the original network (and also by various other parameters). In fact, using a bramble argument we show that this treewidth bound is sharp up to an additive term of 1. We leverage this bound to give an FPT algorithm, parameterized by treewidth, for determining whether a network displays a tree, which is an intensively-studied problem in the field. We conclude with a discussion on the future use of display graphs and treewidth in phylogenetics
    corecore